
The AMC Scheduling Problem: A Description for Reproducibility

Laurence A. Kramer and Stephen F. Smith
The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh PA 15213
{lkramer,sfs}@cs.cmu.edu

Abstract
The United States Air Force Air Mobility Com-
mand (AMC) is responsible for managing hundreds
of airlift and air refueling missions every week on a
global scale. Allocating airframes and flight crews
to individual missions is a large and complex prob-
lem. We have built the AMC Airlift and Air Re-
fueling Allocator to assist planners and schedulers
in this task, and the tool is currently transitioning
into daily operations. Development of this system
has involved us in a number of fruitful areas of re-
search, ranging from building a model that allows
end users to interact with the system at varying lev-
els of automation to exploring techniques for max-
imizing the number of missions assigned in an en-
vironment of resource scarcity. In this technical re-
port we present a description of the AMC schedul-
ing problem in a somewhat abstract form, so that
interested parties may experiment with it. We pro-
vide specifications for building the model, provide
pointers to input data, and provide end results for
scheduling missions while varying capacity con-
strainedness.

1 Introduction
Over the past several years, we have studied a task swap-
ping algorithm, TaskSwap, [Kramer and Smith, 2003; 2004a;
2004b; 2005] as a means of repairing oversubscribed sched-
ules by judicious task retraction and reinsertion. The setting
for this work is the AMC domain[Becker and Smith, 2000;
Smith et al., 2004], a large, multi-capacity, multi-resource
mission scheduling problem with fixed time windows and
resource-dependent task durations. In this paper we pro-
vide a somewhat simplified specification of the AMC do-
main so that interested researchers may reproduce and extend
our techniques, and compare them with alternate methods for
scheduling large numbers of missions in the face of restricted
resource capacity.

We have “simplified” the actual problem so that the level of
effort required to re-implement the domain model is not too
onerous, and at the same time we have tried to maintain those
elements of the problem that make it interesting and challeng-
ing. There is always the danger in producing a “benchmark”

problem set that the problems become so abstract that they
bear no resemblance to the real world domains that inspired
them. We feel fairly confident that our abstractions balance
a need for ease of implementation while retaining the critical
characteristics of the actual domain.

In the remainder of the paper we first summarize the AMC
problem domain, then go on to specify in detail a means to
implementing an executable model, including specifications
for some key algorithms. As we proceed, we point out where
the simplified domain model differs from the actual deployed
model, mainly to inform others as to some of the complexities
of “actual” problem. In pointing out these differences, we
don’t attempt to document the specification of the real world
model in full detail.

While the interested reader should be able to implement a
TaskSwap procedure based on the descriptions in the docu-
ments cited above, we do not provide a specification for a
general purpose scheduling engine such as the one we em-
ploy. We assume that such an engine is already available to
those with the interest to reproduce our work.

Finally, we report results of experiments with the TaskSwap
as applied to the abstract AMC model with supplied data sets.

2 The AMC Scheduling Problem
Here we reproduce a concise description of the problem taken
from [Kramer and Smith, 2005]: “The AMC scheduling
problem can be characterized abstractly as follows:

• A set T of tasks (or missions) are submitted for exe-
cution. Each task i ∈ T has an earliest pickup time
esti, a latest delivery time lftt, a pickup location origi,
a dropoff location desti, a duration di (determined by
origi and desti) and a priority pri

• A set Res of resources (or air wings) are available for
assignment to missions. Each resource r ∈ Res has
capacity capr ≥ 1 (corresponding to the number of con-
tracted aircraft for that wing).

• Each task i has an associated set Resi of feasible re-
sources (or air wings), any of which can be assigned to
carry out i. Any given task i requires 1 unit of capacity
(i.e., one aircraft) of the resource r that is assigned to
perform it.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
The AMC Scheduling Problem: A Description for Reproducibility

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Robotics Institute,Pittsurgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
tech. report CMU-RI-TR-05-75

14. ABSTRACT
The United States Air Force Air Mobility Command (AMC) is responsible for managing hundreds of
airlift and air refueling missions every week on a global scale. Allocating airframes and flight crews to
individual missions is a large and complex problem. We have built the AMC Airlift and Air Refueling
Allocator to assist planners and schedulers in this task, and the tool is currently transitioning into daily
operations. Development of this system has involved us in a number of fruitful areas of research ranging
from building a model that allows end users to interact with the system at varying levels of automation to
exploring techniques for maximizing the number of missions assigned in an environment of resource
scarcity. In this technical report we present a description of the AMC scheduling problem in a somewhat
abstract form, so that interested parties may experiment with it. We provide specifications for building the
model, provide pointers to input data, and provide end results for scheduling missions while varying
capacity constrainedness.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

• Each resource r has a designated location homer. For
a given task i, each resource r ∈ Resi requires a posi-
tioning time posr,i to travel from homer to origi, and
a de-positioning time deposr,i to travel from desti back
to homer.

A schedule is a feasible assignment of missions to wings.
To be feasible, each task i must be scheduled to execute
within its [esti, lfti] interval, and for each resource r and
time point t, assigned-capr,t ≤ capr. Typically, the prob-
lem is over-subscribed and only a subset of tasks in T can
be feasibly accommodated. If all tasks cannot be scheduled,
preference is given to higher priority tasks. Tasks that cannot
be placed in the schedule are designated as unassignable.

3 Building the “Abstract” AMC Model
Building an “abstract” AMC model is comprised of generat-
ing missions with an itinerary of geographical locations and
air wings that exist at a specific location and which possess a
given number of aircraft which can be assigned to a mission.
Data for these objects are found in four tab-delimited text files
that we provide: port-data.txt for locations, wing-data.txt for
air wings, mds-data.txt1 for aircraft, and mission-data.txt for
missions.

3.1 Building Missions
In the abstract model, missions are defined as an ordered set
of legs, each leg being the movement of an aircraft from
point A to point B. An itinerary of legs is concisely repre-
sented in the mission data file by a list of locations. For in-
stance, for mission 6UN45P901337 the itinerary is “KWRI
KIWI KWRI.” This requires that the aircraft fly from location
KWRI to KIWI and then from KIWI back to KWRI. More
precisely, a mission is delineated by seven fields in the file
mission-data.txt:

• Mission ID. This is an alphanumeric string, possibly
with embedded blanks, which uniquely designates the
mission.

• Priority. This is an alphanumeric string of length three,
whose first character is a non-zero integer, second char-
acter a letter, and third character a non-zero integer.
“Lower” values denote a higher priority mission, so for
instance, 1A1 is the highest priority, and 1A3 is a higher
priority than 1B1. When missions are assigned, higher
priority missions must be given preference for assign-
ment if at all possible. That is, scheduling two lower
priority missions is not preferred over one higher prior-
ity mission; however if a high priority mission cannot
be feasibly inserted into a schedule, it is permissable to
assign a lower priority one.

• Aircraft. This field denotes the aircraft type that must
be used to fly the mission. In the actual application it is
sometimes possible to substitute a different aircraft type,
but for the purposes of the abstract model, we’ll assume
a unique aircraft type per mission. We also make the

1MDS stands for model/design series (of aircraft).

simplifying assumption that each mission requires ex-
actly one aircraft. In the full application one or more
air crews are also assigned to missions; however for our
purposes here, crew assignment will be ignored.

• Release (Date). This field, in MM-DD-YYYY-HH:MM
format, represents the time on or after which the required
part (non-positioning legs) of the mission itinerary must
begin. I.e., this represents the beginning of the feasible
window for the mission. The first non-positioning leg
may begin at any time on or after this time as long as all
(non-depositioning) legs can be executed to completion
on or before the Due Date. The significance of position-
ing and depositioning legs will be described shortly.

• Touchdown (Date). For most missions, this field, in
MM-DD-YYYY-HH:MM format, is exactly the same as
the Due Date (see below), however some missions are
specified with a simple one-leg itinerary where the first
and last stops are the same, for instance “KIAD KIAD.”
What this indicates is that the assigned aircraft will re-
main at KIAD for a (fixed) period of time which can
be computed as the difference between the Touchdown
Date and the Release Date.2

• Due (Date). This field, in MM-DD-YYYY-HH:MM
format, represents the time on or before which the
required part (non-depositioning legs) of the mission
itinerary must end. I.e., this represents the end of
the feasible window for the mission. The last non-
depositioning leg may end at any time on or before
this time as long as all (non-positioning and non-
depositioning) legs can be executed to completion on or
after the Release Date and on or before the Due Date.

• Itinerary. As mentioned earlier, the itinerary is a se-
quence of alphanumeric designations for locations or
stops which an aircraft assigned to a mission must visit.
Given the input itinerary “RJTY RKSO RJTY PAED,”
for instance, a good way to think about this (which
closely approximates what actually takes place) is that
an aircraft assigned to that mission picks up some cargo
at RJTY and flies to RKSO where it unloads that cargo
and loads some new cargo. After this it flies back
to RJTY, unloads some of the cargo, and then flies to
PAED, where it unloads the rest of the cargo. When
we construct the mission, the important thing is that we
think of the specified itinerary as “cargo-carrying legs.”
For the abstract model we will not consider any of the
support activities that are actually managed in the full
model such as times to refuel, load, and unload the air-
craft, and mandatory time periods for the crew to rest.
Given the cargo-carrying legs in the input data for a mis-
sion, there are two additional legs that are left unspeci-
fied, the positioning leg and the depositioning leg. Note
that for every mission that is to be assigned an aircraft,
the aircraft must fly from some location to the first cargo-
carrying leg and must fly back to that same location from

2The mission is not required to end at this time, though, and may
be assigned any time in the interval between the Release and Due
Dates.

the last cargo-carrying leg. This location is the (air)
base associated with the wing to which the mission is as-
signed. For instance, suppose mission ABC0807P0335,
whose cargo itinerary we’ve listed above, is assigned
to the 437th Air Wing – 437AW. The 437AW is lo-
cated at Charleston Air Force Base, denoted by the lo-
cation code KCHS. The assigned itinerary for that mis-
sion would then be represented as “KCHS RJTY RKSO
RJTY PAED KCHS.” Note that if that mission were re-
allocated to a different wing, then KCHS at the begin-
ning and end of the itinerary would be replaced with dif-
ferent location codes.
There is one exception where a mission’s itinerary pos-
sibly may not be expanded when it becomes assigned.
This is the case in which a mission’s first and last cargo
legs begin and end at a location that happens to be the
location of an air wing. In this case the scheduling en-
gine can decide to allocate an aircraft from that wing and
no positioning or depositioning is necessary. However, it
may be necessary (e.g., no aircraft available at that wing)
or judicious to allocate an aircraft from a different wing,
in which case positioning and depositioning legs would
be added.

3.2 Itinerary/Leg Duration
Before a mission is assigned, its duration is unknown other
than the fact that all the cargo-carrying legs will take place
between the Release Date and Due Date. When an assign-
ment of a unit of aircraft capacity is to be made to a mission,
the actual duration of each of its legs can be computed as fol-
lows:

1. The unit of aircraft capacity (an airplane) is assigned to
the mission from a particular wing if that wing possesses
at least one unit of available capacity over the entire du-
ration of the mission.

2. With each wing is associated a particular aircraft type
that has a given air speed or velocity.

3. The duration of each leg of the mission is computed as
the quotient of the distance between the origin and desti-
nation of the leg and the velocity. We will describe how
to compute this distance below.

4. The duration of the mission is the sum of the durations
of all of its legs (including possibly the positioning and
depositioning legs as described above) with no gaps al-
lowed. That is, for the purposes of this model, there is
a tight precedence constraint between legs, with the suc-
cessor beginning immediately (a one-second granularity
is assumed) after the predecessor.

For example consider the mission ABC0807P0335 referred
to above. This mission requires a C017 aircraft. The 437AW
has a C017 wing. The velocity associated with a C017 is 500
knots/hour. The distance of the leg from KCHS to RJTY is
6164 knots and thus its duration is (6164 ÷ 500) ∗ 3600 =
44381 seconds. Similarly we can compute the duration of
RJTY → RKSO as 4298 seconds, RKSO → RJTY as
4298 seconds, RJTY → PAED as 21888 seconds, and

PAED → KCHS as 22522 seconds, for a total mission
duration of 97387 seconds.

There is one exception to this computation of leg duration.
That is the case of legs with the same origin and destination
as alluded to above. We mentioned the fact that some mis-
sions have a simple cargo-carrying itinerary of one leg with
the same origin and destination. In the provided data set there
are also missions where more than one leg has the same ori-
gin and destination. In both cases the duration of that leg may
be computed by the function proportionateDuration.

proportionateDuration(mission)
duration ← Touchdown(mission)−Release(mission)
itinLength ← count(cargoItinerary(mission))
Returnround(duration÷ itinLength)

Figure 1: Function proportionateDuration

For example consider the mission 8PH42F801336 whose
cargo itinerary is “0312 0312 KLTS 0312 0312 KLTS 313S
313S KLTS 0312 0312.” In this itinerary there are three legs
0312 → 0312 and one leg 313S → 313S. Since the Touch-
down Date minus the Release Date for the mission is 402120
seconds and there are ten cargo-carrying legs, the duration
for all four of these legs is computed the same by proportion-
ateDuration as (402120 ÷ 10) = 40212 seconds. All other
legs for 8PH42F801336 are computed in the usual manner as
described above.

3.3 Aircraft Types
Aircraft (or MDS) Types are specified in the file mds-data.txt.
There are only two attributes given for each aircraft type:

• Name. This is the unique identifier for the aircraft type,
such as “C017” or “KC135.” When a mission is sched-
uled it must be assigned one unit of capacity (an aircraft)
from a wing whose Aircraft field matches the Aircraft
field of the Mission.

• Velocity. This is the average velocity associated with
the aircraft type in units of nautical miles per hour. This
value is used in computing the duration of time required
to fly from one location to another when an aircraft of
this type is assigned to a mission.

3.4 Locations
Locations, or ports, are specified in the file port-data.txt. As
explained above, a mission comprises a series of legs where
each leg constitutes a movement (possibly stationary) from
one location to another. Each air wing, as we shall explain
shortly, is associated with an air base at a particular location.
Attributes for a location are:

• ID. This is the unique identifier for the location such as
“EDRZ” or “904NW.” The former happens to refer to
an airport or port and the latter to an air refueling track.3

3Note that some refueling tracks are zero-padded in parts of the
input data and not in other parts, and data parsing procedures should
take this into account. For instance, the track designator 0312 is
equivalent to 312, and 20SW to 020SW.

In the actual domain model an air refueling track is a
three dimensional region of airspace in which a refuel-
ing (tanker) aircraft refuels a receiver aircraft. For the
purposes of the simplified model we will ignore any spe-
cial significance of a refueling track, and will treat them
like any other location on a mission’s itinerary.

• Name. This is a more descriptive designation of the
location ID. For instance, the name associated with lo-
cation ID “EDRZ” is “ZWEIBRUCKEN” (Germany).
This field may be ignored in parsing of the port-data file.

• Lat(itude). The latitude of the location in degrees.

• Long(itude). The longitude of the location in degrees.

• Type. This field takes on the values “PORT” and
“TRACK,” designating whether the location is a port
(airbase) or an air refueling track. For the purposes of
this model, this attribute can be ignored.

3.5 Computing distances between locations
To compute the distance between two locations, we make the
simplifying assumption that an aircraft flying between those
two locations will fly in a shortest-distance “great circle”
route; that is a route that conforms to the shortest distance
on the curved surface of the earth. This distance may be
computed given the (four) inputs of the latitude and longitude
of the two locations by the function gcircle, below. First we
define the following constants:
pi/180 ← π ÷ 180.0
180/pi ← 180.0÷ π
degreeCoeff ← 90.0 ∗ 60.0
auxCoeff ← 60.0 ∗ 180/pi

Let olong and olat be the longitude and latitude of the ori-
gin location and dlong and dlat be the longitude and lati-
tude of the destination location. Then the great circle distance
between the origin and destination may be computed by the
function gcircle as follows:

gcircle(olong, dlong, olat, dlat)
lat ← pi/180 ∗ olat
latd ← pi/180 ∗ dlat
m ← pi/180 ∗ (olong − dlong)
x1 ← sin(lat) ∗ sin(latd)
y1 ← cos(lat) ∗ cos(latd) ∗ cos(m)
Return(degreeCoeff − (auxCoeff ∗ arcsin(x1 + y1)))

Figure 2: Function gcircle

Distance computations from the preceding example are
summarized in the table 1.

3.6 Air Wings
The remaining element of our model is the air wing. An air
wing is a collection of like aircraft at a particular location
(base). Wings are specified in the file wing-data.txt, each row
in that file indicating available capacity (aircraft) for a given
wing and date:

Origin Destination Distance (knots)
KCHS RJTY 6164
RJTY RKSO 597

RKSO RJTY 597
RJTY PAED 3040
PAED KCHS 3128

Table 1: Sample Distance Calculations

• Name. This is the unique identifier for the wing, such
as “437AW” or “305AMW.”4 When a mission is sched-
uled it must be assigned one unit of capacity (an aircraft)
from a wing whose Aircraft field matches the Aircraft
field of the Mission.

• Aircraft. The aircraft type associated with the wing,
such as “C017” or “KC010.”

• Base. The location at which the wing is situated. This
will be used to compute the distance of the positioning
and depositioning legs once a wing is assigned to a mis-
sion. It is assumed that all missions are round trips from
and to the base of the assigned wing. As mentioned ear-
lier, if the first and last cargo-carrying legs of a mission
begin and end, respectively, at a location that is the base
of the assigned wing, then the addition of positioning
and depositioning legs is unnecessary.

• Date. The day, in MM-DD-YYYY format, for which
aircraft capacity is being specified. Note that the first
row for each wing has the date 01-01-1993, which is ar-
bitrary, and can be thought of as the “beginning of time.”

• Possessed. This value represents the number of aircraft
the wing possesses. This is not the amount, however,
that is available to be allocated on the given date. The
reason for this is that on any given day a certain number
of aircraft are held in reserve for maintenance and other
functions. This value will be used in computations for
varying capacity in testing the TaskSwap procedure as
we will explain shortly.

• Contracted. This value represents the number of air-
craft the wing has contracted, or made available to the
scheduler to allocate on the given date. This number
may only be exceeded, or overallocated, by permission
of the wing. For the purposes of the simplified AMC
problem, we will consider this capacity value to be a
hard limit. In addition, for the purposes of this model,
we will assume that the last contracted value provided in
the data set for each wing will extend out to infinity at
that same value (i.e., not drop to zero immediately). For
implementation purposes, of course, this capacity value
only need be represented for a couple of weeks or so past
the point for which actual values are available.

4Although the name 437AW is unique, the 437AW comprises
both a C017 wing and a C141 wing, and these two wings must be
considered separately for capacity purposes.

4 Scheduling the Abstract AMC Model
The deployed AMC Allocator application operates in an en-
vironment that is ongoing and dynamic. In general, there is
no notion of “scheduling from scratch.” Rather, a schedule
always exists but is continually updated, either due to new
missions being added or existing missions being altered. In
our research we have simulated that environment to a cer-
tain degree, by assuming an existing schedule that has been
generated somewhat greedily, and then studied methods for
inserting additional tasks into the existing schedule. As our
work has progressed, we have discovered techniques that are
more applicable to schedule construction – and thus not quite
as important to the AMC domain itself – but which might be
transferrable to other domains, and which can certainly use
the AMC problem as a test-bed.

Later, we will discuss particular requirements for the var-
ious experimental results that we publish. At this point we
summarize what is required of a scheduling engine to pro-
duce a valid schedule given the Abstract AMC problem as
we have specified its components above.

• A feasible assignment. First of all, an assignment of
an air wing to a mission requires making two decisions:
which air wing among mission-compatible air wings
should be assigned to the mission, and at which time
should the mission be assigned along that wing’s re-
source timeline. It goes without saying that the choice of
wing and start-time must be both resource feasible and
time feasible. I.e., the assigned-start time must be such
that all cargo-carrying legs – in tight precedence order
– begin on or after the release date of the mission and
end on or before the due date. In addition, over the time
interval from the beginning of the positioning leg of the
mission to the end of the depositioning leg there must
be at least one unit of available aircraft capacity for the
assigned wing.

• Priority. High priority missions take priority in assign-
ment over lower priority missions. This may be en-
couraged, although not guaranteed, by scheduling mis-
sions in priority order. This may not succeed in ensur-
ing that a lower priority mission is able to be assigned
when a higher priority one failed since even if a com-
plete scheduling algorithm is employed (which is not
advisable given the intractable nature of the problem)
it might be the case that at some point when capacity is
almost completely consumed, a shorter duration low pri-
ority mission could be assigned where a longer duration
high priority mission would not be able to be assigned.
Given the impossibility in proving in the general case
that a higher priority mission left unassigned could have
found a feasible assignment, the strongest statement we
can make is that a good schedule is one that minimizes
the high priority missions left unassigned after schedule
generation and maximizes the total number of missions,
irrespective of priority, that are able to be assigned.

• Cost. Although there is no strict constraint that the
“cost” of a schedule be minimized, this certainly is pre-
ferred. For our abstract model we define cost as the

sum of mission flight distances (In actuality other fac-
tors such as aircraft type are taken into account). Mis-
sion distances can be minimized by choosing a wing as-
signment whose base location minimizes the length of
the positioning and depositioning legs. Selecting assign-
ments of minimal cost in this sense has the synergistic
effect of allowing more missions to be able to be as-
signed, since shorter distance missions imply shorter du-
ration missions and thus less resource usage over time.

There are a number of other scheduling preferences that
we do not consider for the Abstract AMC problem. One, for
example, is to produce resource-balanced schedules. A good
schedule is one where capacity usage of aircraft and air crews
across wings is similar. It would not be a good policy, then, to
assign one wing at 90% of capacity and a wing of like aircraft
at 30% of capacity.

5 Experimental Design and Results
Our motivation in writing this paper has been to provide
the community with a detailed, though somewhat abstracted,
specification of the AMC Problem so that others may repro-
duce our experimental results, possibly extending them and
advancing the state of the art. We assume that those that
choose to do so are familiar with the prior research we have
published with respect to the TaskSwap Procedure [Kramer
and Smith, 2003; 2004a; 2004b; 2005] as applied to the AMC
domain. For this present effort we have not sought to improve
on the results of our prior work, but instead to re-run a sub-
set of the same experiments on the simplified problem and
present them as a benchmark. The common objective func-
tion in these experiments is to assign as many tasks as possi-
ble while respecting task priority, and to do this in an efficient
manner.

We document our results for five sets of experiments, all
conducted on the same 100 problems.5 As in our prior work,
these 100 problems were generated by assuming that the set
of missions to be scheduled (as given in the file mission-
data.txt) remains constant, but the capacity of the resources
– the air wings (the baseline for which is given in wing-
data.txt) – is successively reduced in order to produce harder
and harder problems. The 100 problems are divided into five
sets of twenty, where the first set is generated by randomly
reducing the capacity for each wing between 0 and 10%. The
second set is generated by randomly reducing the capacity
for each wing between 0 and 20%, and so on to produce five
sets of twenty problems. While it is true that this procedure
does not guarantee that all problems in the second data set,
for instance, are harder than all in the first data set, in general
the problems for each data set become progressively harder
as the likelihood of capacity available to assign missions be-
comes less.

5.1 Generating Wing Capacity
Recall that the available capacity for aircraft for each air wing
is maintained in the file wing-data.txt as two numbers for each

5All experiments were run on a Dell Latitude D810 laptop, pro-
cessor speed 2.13Ghz with 2Gb ram.

wing for a given date: Possessed Capacity and Contracted
Capacity. Possessed Capacity does not vary over time. It
represents the number of aircraft that the wing “owns.” Con-
tracted Capacity, however, represents the number of aircraft
that are available to be assigned on a given date, and will vary
from day to day depending on the needs of the wing. Those
aircraft reserved by the wing to fly training missions or to un-
dergo routine maintenance are subtracted from the Possessed
amount to produce the Contracted amount. The Contracted
Capacity is the amount the wing has made available to the
central schedulers at AMC to allocate to various missions as
they see fit.

In order to simplify the process for generating new prob-
lems for our experiments, we do not specify a new Contracted
Capacity value for each wing for each date, instead we rely
on the more compact formulation in the file problem-set.txt.
The header of this file is the list of the 16 wings for which
data is given in the file wing-data.txt: 437AW-C017, 436AW-
C005, 60AMW-C005, 437AW-C141, and so on. Each suc-
ceeding row in the file is a vector of 16 numbers, one ca-
pacity value for each wing. Each row in the file corresponds
to a given problem instance. Problem one, for instance, lists
the values 19, 15, 13, 9, 16, 16, 10, 26, 24, 12, 42, 13, 11,
37, 43, 27. For each wing then, we use these values, called
NewPossessed, to determine from the following formulas
how much that wing’s Contracted Capacity will be reduced
for every day:
For each wing w, the contract reduction CR is
CRw ← (Possessedw −NewPossessedw)
For each wing w and day i the new Contracted Capacity is,
ContractedCapw,i ← max((ContractedCapw,i − CRw), 0)
Thus, for the first problem for the 437AW-C017, its contract
reduction CR is 21− 19 = 2. So for each day its contracted
capacity is reduced by 2. Similarly for the 436AW-C005, its
contract reduction is 15 − 15 = 0, so its contracted capacity
is not reduced at all.

5.2 Experiment One, Retraction Heuristics
In the first experiment we establish a baseline for the
TaskSwap procedure on the problem set of problem-set.txt us-
ing some of the techniques described in [Kramer and Smith,
2003] and [Kramer and Smith, 2004a]. Recall that TaskSwap
assumes that there is a schedule in place (possibly generated
in a greedy fashion), and that one or more tasks have not been
able to be allocated. One by one (in priority order) an at-
tempt is made to schedule these unassignable tasks by tem-
porarily retracting other tasks, and after the target task is as-
signed re-assigning those retracted. The procedure recurses
on those that cannot be re-assigned. This experiment com-
pares four heuristics[Kramer and Smith, 2004a] for selecting
which tasks to retract: Min Conflicts, Min Contention, Max
Flexibility, and Random. We apply several techniques shown
to be effective in [Kramer and Smith, 2004a] for pruning the
search space: task pruning, interval pruning, and a depth (re-
cursion) bound of 10. Our results are summarized in Tables 2
and 3.6

6For those interested we can make available complete output data
and end schedules for this and all other experiments.

Set Begin Rand MinCont MinConf MaxFlex
1 6.4 1.15 1.1 1.65 0.85
2 12.55 5.8 3.75 3.8 3.6
3 27.6 19.95 16.55 17.75 15.15
4 49.8 40.55 36.15 37.15 35
5 100.85 87.95 81.95 83.5 82.55

Avg 39.44 31.08 27.9 28.77 27.43

Table 2: Experiment1: Average Unassignable Tasks

Set Random MinCont MinConf MaxFlex
1 3.2 4 5.1 1.85
2 13.55 9.1 10.75 5.9
3 49.45 55.35 47.45 24.2
4 125.65 127.9 86.6 62.85
5 373.75 290.55 211 171

Avg 113.12 97.38 72.18 53.16

Table 3: Experiment1: Average Run Time in Seconds

Consistent with our prior work, we see that Max Flexibility
on the average outperforms other retraction heuristics both
in terms of number of tasks assigned and run time. It does
not completely dominate the other heuristics, and in fact for
a few problems a policy of random retraction produced the
best results. For this experiment “optimal” results (meaning
that all tasks were able to be assigned) were achieved using
some retraction heuristic for all but 3 of the 20 problems in
the first data set. 11 problems in the second data set were
solved optimally, and 3 in the third data set.

5.3 Experiment Two, Commitment with Max
Availability

In the second experiment we maintain all parameters exactly
the same as in the first. We generate an initial schedule in
priority order and test the retraction heuristics as before. In
this case, though, rather than re-assigning the retracted tasks
to their earliest feasible start time, we apply a Max Availabil-
ity heuristic[Kramer and Smith, 2005] to commit them at the
times when all are most likely to be re-assigned. The results
are summarized in tables 4 and 5. As can be seen, this re-
sults in an improvement across the board in number of tasks
assigned. We can also report that 2 more problems in the first
problem set are solved to optimality, leaving only one in that
set unsolved. Two more problems are solved in the second
problem set as well, totalling 13. Averaging over all prob-
lem sets, employing the Max Availability heuristic resulted in
somewhat slower run times, but looking more closely we see
that that is due to much slower times for sets four and five.
Runtimes for the first three problem sets actually decreased
slightly.

5.4 Experiment Three, Schedule Construction
using Max Availability

The third experiment holds constant all of the settings used in
experiment two, however in this case we use the Max Avail-
ability heuristic to guide the placement of tasks during initial

Set Begin Random MinCont MinConf MaxFlex
1 6.4 0.25 0.25 0.15 0.2
2 12.55 2.7 2.15 1.85 1.85
3 27.6 17.35 14.1 13.95 12.9
4 49.8 36.95 32.3 33.75 31.75
5 100.85 83.6 78.05 78.9 77.55

Avg 39.44 28.17 25.37 25.72 24.85

Table 4: Experiment2: Average Unassignable Tasks

Set Random MinCont MinConf MaxFlex
1 1.4 2.4 2.45 1.3
2 4.35 5.2 6.7 4.4
3 53.2 48.55 38.1 23.45
4 159.1 149.4 112.2 88.8
5 454 326.4 282.95 234.75

Avg 134.41 106.39 88.48 70.54

Table 5: Experiment2: Average Run Time in Seconds

schedule construction. The results (tables 6 and 7) show that
this is a clear improvement 7 over the default greedy sched-
ule construction policy of assignment at earliest feasible start
time employed in the first two experiments. Max Availability
is used as well during the TaskSwap phase, however the re-
sults are not as dramatic as during the schedule construction
phase. Overall, we end up with more tasks assigned and im-
proved run times. Finally, all 20 problems in the first set are
solved to optimality, as are 13 in the second set and 4 in the
third problem set.

5.5 Experiment Four, Searching Deeper
The fourth experiment recapitulates the third in all ways ex-
cept for one parameter change: the depth (recursion) bound
is relaxed from a value of 10 to a value of 100. The results
(tables 8 and 9) show that this is a fairly expensive trade-off,
yielding small gains in tasks assigned but with average run
times generally more than twice as long. Optimal solutions
are found for three more problems in the second problem set,
totalling 16 for that set.

5.6 Experiment Five, Searching Broader
Each experiment we’ve documented has produced results
(in terms of number tasks assigned – actually, number of
unassignable tasks remaining) which have improved on the
prior experiment. Some of the experiments have done so at
the expense of longer run times, but even for the hardest prob-
lems, we have shown the TaskSwap procedure to be very ef-
ficient, in the worst case taking several minutes to terminate.
For the fifth experiment we start with the end results of the
fourth, and attempt for each problem in our 100-problem set
to see if by broadening the search we can possibly improve
on the best solutions.8

7Compare the “Begin” columns in tables 4 and 6.
8For 40 of the problems this is actually not an issue, as we have

already demonstrated that we can quickly reach the optimal solution.

Set Begin Random MinCont MinConf MaxFlex
1 0.9 0.3 0.1 0 0
2 4.65 2.7 1.6 1.75 1.2
3 18.95 16.3 13.05 12.95 11.35
4 41.15 36.15 31.95 31.9 29.3
5 90.6 81.85 76.75 77.25 75.4

Avg 31.25 27.46 24.69 24.77 23.45

Table 6: Experiment3: Average Unassignable Tasks

Set Random MinCont MinConf MaxFlex
1 1 0.75 0.4 0.15
2 7.1 5.05 4.35 2.4
3 53.05 46.2 29.65 20.7
4 136.8 152.25 80.45 52.25
5 363.45 308.9 254.15 206.9

Avg 112.28 102.63 73.8 56.48

Table 7: Experiment3: Average Run Time in Seconds

Given the size of the problem space, a complete search
is out of the question. Alternatively what we do is employ
the “neighborhood search” methods described in [Kramer and
Smith, 2004a]. For this experiment we reuse exactly the same
parameters as for the prior experiment9, but test with only the
Max Flexibility heuristic for retraction, it having proved on
average to be the best. We generate an initial schedule guided
by Max Availability and then employ TaskSwap as in exper-
iment four. We then conduct ten iterations of search around
the Max Flexibility base heuristic, comparing the VBSS tech-
nique with the Acceptance Band10 technique.[Kramer and
Smith, 2004a] Both techniques will stochastically pick a task
to retract that will typically have a heuristic value similar to
that which the Max Flexibility heuristic would select (in some
cases selecting the same task), but in some cases VBSS will
select a task with a heuristic value far from the “best.” Each
iteration of neighborhood search begins where the last left off,
so if the state has improved, the search does not revert to the
initial state.11

In table 10 we present a summary of these runs for
the five problem sets. Column 1 is the average number
of unassignable tasks before the TaskSwap/Neighborhood
Search process is initiated. Columns 2 and 3 respectively are
the average numbers of end unassignable tasks achieved with
10 iterations of the Acceptance Band and VBSS Neighbor-
hood search process. The final two columns are the average
run times for each method. Table 11 lists the final best re-

9One minor alteration we make is to reduce the depth bound
from 100 to 27 as that depth was the greatest successful on the prior
run, so searching deeper than that is wasted time. For the neigh-
borhood search phase, however, this depth is doubled to 54, since
we search “off” the heuristic somewhat, and can’t guarantee that
searching deeper won’t find a better solution.

10Our setting for the Acceptance Band was 0.10.
11This semi-exhaustive search process is not for the faint of heart,

taking a solid month of cpu time to run the just the 20 problems in
problem set five for VBSS and Acceptance Band.

Set Begin Random MinCont MinConf MaxFlex
1 0.9 0.2 0.1 0 0
2 4.65 2.9 1.6 1.55 1.1
3 18.95 15.85 12.75 11.9 11.35
4 41.15 35.25 31.55 31.25 29.35
5 90.6 82.8 76.4 76.4 75.15

Avg 31.25 27.4 24.48 24.22 23.39

Table 8: Experiment4: Average Unassignable Tasks

Set Random MinCont MinConf MaxFlex
1 0.8 0.75 0.35 0.15
2 14.55 9.9 8.1 5.45
3 145.5 88.5 74.85 50.8
4 392.8 259.05 291.5 148.1
5 927.6 494.4 579.15 459.95

Avg 296.25 170.52 190.79 132.89

Table 9: Experiment4: Average Run Time in Seconds

sult for end unassignable tasks for every problem in the 100-
problem set. Note that all problems in the first data set were
solved optimally, as were 18 of 20 in data set two, and 5 of
20 in data set three. For those problems for which an optimal
solution was not found we present the results as “best known”
solutions, which may or may not be further improved upon.

6 Summary
In this paper we have presented a specification of a simpli-
fied AMC Allocator domain, so that others may implement
it as a test bed for multi-mission multi-capacity scheduling
problems. In particular we reproduce our prior work with the
TaskSwap procedure in a series of experiments that will allow
extension of and comparison to that research.

Acknowledgements
The work reported in this paper was sponsored in part by the
US Air Force Research Laboratory under contracts F30602-
00-2-0503 and F30602-02-2-0149, by the USAF Air Mobility
Command under subcontract 10382000 to Northrop Grum-
man Corporation, and by the CMU Robotics Institute. In ad-
dition we thank Laura Barbulescu for her useful comments
on this paper.

References
[Becker and Smith, 2000] M.A Becker and S.F Smith.

Mixed-initiative resource management: The amc barrel
allocator. In Proc. 5th Int. Conf. on AI Planning and
Scheduling, pages 32–41, Breckenridge CO, April 2000.

[Kramer and Smith, 2003] L.A. Kramer and S.F. Smith.
Maximizing flexibility: A retraction heuristic for oversub-
scribed scheduling problems. In Proceedings 18th Inter-
national Joint Conference on Artificial Intelligence, Aca-
pulco Mexico, August 2003.

Set Begin ABand VBSS ABand Time VBSS Time
1 0.9 0 0 0.3 0.25
2 4.65 0.6 0.4 195.1 159.4
3 18.95 9.5 9.3 6380.85 6257.3
4 41.15 25.25 25.2 26836.55 28386.6
5 90.6 68.9 68.4 65939.2 68777.95

Avg 31.25 20.85 20.66 19870.4 20716.3

Table 10: Experiment5: Neighborhood Search

Problem Set1 Set2 Set3 Set4 Set5
1 0 0 0 29 30
2 0 0 7 49 51
3 0 7 20 85 7
4 0 0 1 32 11
5 0 0 0 7 125
6 0 0 16 6 25
7 0 1 19 21 35
8 0 0 10 11 92
9 0 0 8 9 19

10 0 0 24 4 194
11 0 0 0 53 130
12 0 0 2 4 50
13 0 0 19 12 60
14 0 0 0 1 56
15 0 0 27 18 38
16 0 0 2 36 68
17 0 0 7 25 93
18 0 0 0 8 64
19 0 0 20 49 98
20 0 0 1 32 118

Table 11: Experiment5: Final Unassignable Tasks

[Kramer and Smith, 2004a] L. A. Kramer and S. F. Smith.
Task swapping for schedule improvement, a broader anal-
ysis. In Proc. 14th Int’l Conference on Automated Plan-
ning and Scheduling (ICAPS-04), Whistler BC, June 2004.

[Kramer and Smith, 2004b] L. A. Kramer and S. F. Smith.
Task swapping: Making space in schedules in space. In
Proc. Fourth International Workshop on Planning and
Scheduling for Space (IWPSS-04), Darmstadt Germany,
June 2004. European Space Agency.

[Kramer and Smith, 2005] L. A. Kramer and S. F. Smith.
Maximizing availability: A commitment heuristic for
oversubscribed scheduling problems. In Proc. 15th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS-05), Monterey CA, June 2005.

[Smith et al., 2004] S. F. Smith, M. B. Becker, and L. A.
Kramer. Continuous management of airlift and tanker re-
sources: A constraint-based approach. Mathematical and
Computer Modeling – Special Issue on Defense Trans-
portation: Algorithms, Models and Applications for the
21st Century, 39(6-8):581–598, 2004.

